SPECIAL FEATURE SYMBOLIC COMPUTATION

A

Symbolic algebra and
physical-model-based

control

by Peter J. Gawthrop and Donald J. Ballance

In order to achieve the best possible control of a particular system, it 1s
clear that as much information about the system as possible should be
used when designing the controller. This leads to a controller
specifically tailored to the system being controlled. Unfortunately this is
expensive in terms of design time and expertise and a number of
approaches have been suggested to overcome this problem. The
approach taken by physical-model-based control is to model the system
in a generic manner and then automatically design the controller based
on this model. This process requires symbolic algebra to enable the

controller to be designed.

he role of symbolic algebra in the design

and implementation of physical-model-based

controllers is discussed and illustrated using

the example of a chemical reactor. It is argued
that computer algebra makes possible such a generic
approach to controllers incorporating system-specific
information.

Physical-model-based control has been introduced by
Gawthrop, Jones, Mackenzie, Smith and Ponton'*? to
provide a general methodology for building system-
specific controllers which make use of system-specific

Peter Gawthrop Donald Ballance

information about the system to be controlled. Partially-
known and nonlinear systems form two categories of
systems to which such a methodology is particularly
appropriate; this article concentrates on a nonlinear
system for the purposes of illustration. Precisely because
each control algorithm has to be specifically constructed
for each system, it is essential to provide soitware to help
in this process. The use of computer algebra is a vital part
of such software.

The purpose of this article is to present the computer
algebra aspects of physical-model-based control; the
control theory aspects are covered in detail elsewhere.

Physical-model-based control

The structure of model-based observer control*?? is
outlined in Fig. 1. This separation into controller and
observeris, of course, a standard paradigm and, as such,
provides a useful starting point for model-based observer
control. The different aspects of the approach are outlined
below:

® The overall model-based observer controller is referred
to as the compensator. With reference to Fig. 1, the
compensator is a dynamic system with two (possibly
vector) inputs—the system output y, and the corres-

COMPUTING & CONTROL ENGINEERING JOURNAL APRIL 1997

ponding set-point #w—and one
{possibly vector) output—the
system input #. It is conceptually
divided into three parts: model,
observer feedback and controller
Jeedback.
The block labelled ‘model’ is a
dynamic simulation model of the
system to be controlled (labelled
‘system’). This system may be
nonhnear.
¢ The model has the same control
input # as the system. Other
system inputs which can be
measured could also be applied
to the model in the same way to
give feedforward compensation.
e The measured outputs ¥; of the
system are compared with the
corresponding model outputs y
to create a model error e, = y;—.
¢ Additional inputs «; are provided
to this model—typically one for

SYMBOLIC COMPUTATION

u
system ——o0w - Ye
/ compensator
___________ - —
|
observer |
feedback !
|
Y |
|
Yo
> model -
|
n :
|
controller w
feedback |

each state. The model has observer feedback applied to
these additional inputs in such a way as to drive the

model error ¢, to zero.

e Additional outputs y; are provided associated with
virtual sensors. The controller feedback generates the

control signal # using the virtual
sensor signals y; together with the
set point . Its purpose is to make
the model behave in a desired way.
If the model-based observer is
working well, these internal
signals will be the same or close
to the corresponding (but
possibly unmeasurable) internal
signals generated within the
system itself. Thus the system
will be driven to behave in the
same way as the (controlled)
model.

Symbolic computation
The system model is at the heart
of the physical-model-based
controller of Fig. 1. Although this
use of a physical system model
has important advantages (see
References 1-3 for details) it has the
disadvantage that each controller is
system specific; each controller 1s
customised for a particular process.
For this reason, it is essential to have
a generic methodology, supported
by software, for the design and

implementations of these -custo-

COMPUTING & CONTROL ENGINEERING JOURNAL APRIL 1997

Fig. 1 Model-based observer control

mised controllers. The use of computer algebra is a vital
part of such software.

The following subsections indicate this generic
methodology for each part of the control structure of
Fig 1.

acausal-bond-graph
language:Fig
mriemonic: abg

component labels
language: MTT
mnemonic: Ibl

|

abg_fig2pl

acausal’bond graph
language’: Prolog
mhemonic: abg

abg2cbg_|

causatbond graph
language: Prolog
maemoric: chg

=

cbg2ese_pler

l

component CRs
language: Reduce
mnemonic: cr

slementary egns
language: Reduce
muemonic: ese

system definitions
language: Reduce
mnemonic: def

[

ese2dae_|

—

diff-algebraic eqns
language: Reduce
mnemonic:dae

diff-algebraic eqns

language: Simulink
mnemonic; dae

Fig. 2 Model transformation tools®

71

- SYMBOLIC COMPUTATION

—
steady-staile params.
language: Reduce
mnemonic: sspar

steady-states
language: Reducs
mnemonic: ss

diff-algebraic egns
language: Reduce
mnemonic: dae

dae2dm_r

computer. The bond graph
representation (see, for example,
References 4 and 2) has been chosen
for this purpose and a corresponding
set of model transformation tools
(MTT) has been written. This set of
tools has been implemented with the
UNIX environment making use of
Prolog, Reduce and standard
UNIX/GNU tools.

The structure of part of
the toolbox appears in Figs. 2-4, Each

language: Reduce -
mnemonic: dm

descriptormatrices | dm_rom |-descriptor matrices
language: Matlab
mnemonic: dm

box represents a representation with
three attributes: the name of the
representation, the language in which

dm_r2tex

descriptor-mairices

language: L.atex R
mnemonic: dm file. Each

the representation is expressed and a
mnemonic; it 1s implemented as a text
arrow represents a

transformation ~ between repre-
sentations; it is mplemented as a

transfer function tH—r2m
language: Reduce -
mnemonic: tf

t—r2tex

trangfer function

language: Latex

mnemonic: tf

UNIX Bourne shell script using an

language: Matiab approprlatg language. The
mRemonic: corresponding dependency tree is

implemented as a UNIX make file,

e fination which automates the process of

keeping the various different
representation up to date.

It 1s useful to think of bond graphs

Fig. 3 More model transformation tools!

The model

To be able to apply computer algebra methods to
design such control systems, a representation of the
model is required which is on the one hand accessible to
the control engineer and on the other is concise, precise
and unambiguous so that it can be interpreted by

 ditt-algebraic eqris.
language: Rediice
. mnemonic: dae

dae2cse_r

constrainad:state egns. | cse_rom
. language: Beduce
. mnemonicicse

constrained-state eqns:
language: Simulink
miemonic:-cse

constrained:state egns:
langliage: Latex
mnemonic: cse

cse_retex

o ,"'Ei'olyjot"équa’tic@'

roboteguations
language: Latex
mnemonic: rm

. language: Reduce
. mnemonic .

Fig. 4 More model transformation tools?

as providing a high-level language for

describing dynamic systems (whether
mechanical, electrical, hydraulic or chemical). Within the
context of Fig. 1, the resulting system description can
then be ‘compiled’ into a symbolic form suitable for:

® observer design
e controller design implementation
e system and controller simulation.

In certain cases, the model can be described by a
(possibly) nonlinear state equation of the form:

&= flau) @
y=g(x) 2

The form can also be automatically generated from the
system description but can be an unwieldy object to use
directly when divorced from its physical meaning. Hence
we prefer to do our design directly in the physical domain
rather than using eqns. 1 and 2.

Chemical reactor example

An example of a chemical reactor is now used to
illustrate the main points of the modelling and design
procedure, The schematic diagram appears in Fig. b; the
reactor has two reaction mechanisms: A — B — Cand 2A
— D). The reactor mass inflow and outflow f, are identical.
q represents the heat inflow to the reactor. The two

COMPUTING & CONTROL ENGINEERING JOURNAL APRIL 1997

SYMBOLIC COMPUTATION

system outputs are taken as ¢,
the concentration of species b,
and £, the reactor temperature.
The controlled inputs are f, the
reactor flow, and ¢ the heat input.

A—-B—C

helping with such approximation.
Here it has been assumed that the
time constants associated with
the reactor jacket are fast enough
to be neglected. This simplifi-

Other inputs are #, the inflow 2A—D cation can be done directly from
temperature and ¢, the inflow the appropriate bond graph, but
concentration of substance A. the details are omitted here.

The corresponding bond graph A 2 The control input ¢ and output
appears in Fig 6. The t, are colocated;, they are
accumulation of the components - - covariables of the SS element
A and B and of enthalpy are labelled £, The implication of
represented by the three C fry Cor o q fry Gy b this is that control of #, using ¢

components labelled ma, mb and
h_r. The reactor flow is
represented by the SS component
labelled /_» and modulates the R components labelled #fa
and 7/b. The reaction kinetics A — B, B — Cand 2A —
D are represented by the R components labelled AB, BC
and AD, respectively.

The detailed interpretation of such a bond graph
is discussed in detail elsewhere (see, for example,
Reference 2. The purpose of this section is to indicate
how such a physical model description can help
making control design decisions:

1 The art of modelling is very much the art of approxi-
mation, choosing which parts of the system to neglect
in the model. Bond graphs provide a useful way of

Fig. 5 Chemical reactor

is relatively easy. For this
reason we assume perfect
control of £, and concentrate on
the more difficult problem of control of ¢; using f,. This
ideal control can be represented by inverting the
causality of the SS element labelled # to give £, as an input
and g as an output—the heat input required to achieve
the desired ¢,.

With this approximation, and assuming constant #,, the
system equations relevant to the (isothermal) control

problem become:
T1 = aesks — xieder +) + cou 6)
Xo = x181k1 — JCz(Szkz + u) (4)
Y =X (5)
where

Fig. 6 Chemical
reactor: bond graph

:

| 1irt

7
C:h_r /

0T r |

SS:t. 0 ~

C:ma C:mb SS«c b
SS:c 0 1:fa O:ca 1:fAB O:ch | 1:idb
7
Rirfa R:AD R:AB R:BC R:rfb
} TT T T
| 0o e
J' :] ,,—JI”I’ b
) =TT P P
SSir }—ﬁ 1 ‘7R.n b B] L
T Lo L L
: Lo by by
Loy by Loy
! I I I
\i Py iy T
Rirt R:ADt R:ABt R:BCt

e

SSitr

COMPUTING & CONTROL ENGINEERING JOURNAL ~ APRIL 1997

73

MBOLIC COMPUTATION

& = exp(g/T) (6)
These are nonlinear equations.

3 The control input £, and output ¢; are not colocated, and
so there is potentially a non-trivial control problem
associated with this loop. Furthermore, direct
manipulation of the bond graph to obtain the system
nverse reveals that the inverse system has first-order
zero dynamics whereas the system has second-order
dynamics. This purely qualitative information is
obtained directly from the bond graph.

Adding the numerical information to the symbolic
expressions obtained from Fig. 6 gives the graphs
of Fig. 7. The first plot shows the steady-state output
ys against f; it reveals that not all steady-state
concentrations are achievable, and those that are may

have two corresponding flows. The second and third
show the poles and zero, respectively, of the linearised
system also plotted against f;; these plots show that,
whereas the system is stable for all flows, the zero is in
the right-half plane flow for low flows and migrates
into the left-half plane for larger flows.

As the system is nonlinear with unstable zero
dynamics, nonlinear generalised predictive control is
appropriate.

Observer design

Unlike the linear case, there is no general theory of
state estimation for nonlinear systems. However, follow-
ing the linear case, it is natural to embed the system
model within the observer feedback loop of Fig. 1.

For example, observers can use linear feedback around
a nonlinear model. In view of eqn. 1, such observers can

Fig. 7 Model numerical
properties

0 l }

L | | i | I | J

0 50 100

—200 [
-400

poles

-600 -

-800

150 200 250 300 350 400 450 500

-1000 L L
0 50 100

1

1000

Zeros
o
T

| | |]
150 200 250 300 350 400 450 500

| | 1

50 100

| | |
150 200 250 300 350 400 450 500
f_s

0 50 100

|
150 200 250 300 350 400 450 500
fs

COMPUTING & CONTROL ENGINEERING JOURNAL APRIL 1997

SYMBOLIC COMPUTATION

Fig. 8 Nonlinear control

08

0-6

204
(]

0-2

02 I ! !

normalised steps, nonlinear

0 0-002 0-004 0-006 0-008 0-:01 0-012 0-014 0-016 0-018 0-02

be rewritten as

F=FRu) + L®e Q)
9=g® ®)
e=9-y ©)

Unlike the linear case, the stability of such an observer is
not guaranteed in general and its design is non-trivial.
Once again, the approach taken here is to use physical-
model-based observers and so build physical intuition
into the design of such observers. An experimental case
study is reported by Costello and Gawthrop.® Here, a few
brief remarks illustrate some features of the approach:

1 The bond graph of Fig. 6 shows two inputs—t, the
inflow temperature, and ¢, the inflow concentration
of substance A—which are not used for control. In
this form, these two additional drive the model, and
hence the compensator and thus provide a form of
Jeedforward control.

2 If, on the other hand, these inputs were not measured,
a model representing the corresponding uncertainty
can easily be incorporated. The unknown inputs then
become states of the observer.

Controller design

Recent research has shown that the continuous-time
generalised predictive control can be extended to cover
certain non-linear systems. The algorithm requires the
symbolic calculation of (possibly high-order) Lie
derivatives, These are hard to generate by hand, but a
tool has been added to MTT which uses symbolic
computation to automatically generate the computer code
necessary to implement GPC.

In particular, the algorithm requires the computation
of:

Yy, (t) = O(x(8), Uy, (1)) (10)

where Yy, (#) is a column vector (,(N, + 1) x 1): of output
derivatives:

y

y [
Y (t) = Y12 D

where ¥ indicates the ith derivative with respect to time.
Uy, (f) is a column vector (1, (N, + 1) x 1): of input deriva-
tives:

u

U _ u[l] o
Nu(t) - w2 (1~)

LY
For example, the first four elements of ¥ are:

Yo=x

Y, = xi61k — X2(82k2 + T/t)

Yz = wx%&&;k\kg + X181k1(r81]21 — Szkg — 224)
+ Xz(ﬁi)k% + 2eokott + MZ) + coerkernt

Vs = 2ude 63k + a3 eakibs(3ek: + eok + dut)
+ meiki(—2c08akau + ek + ei8shiks + 3eikin
+ e84k + 3eokou + 3u)
+ wo(—ed3ks ~ 3ebkiu — Seskor® —)
+ coerku(— ek — g0k — 2%)

In addition, the partial derivatives of O, U) 620/0U7,
82019 Udx are needed. Except for the simplest of systems,

COMPUTING & CONTROL ENGINEERING JOURNAL APRIL 1997

75

- SYMBOLIC COMPUTATION

Fig. 9 Linear control

1 1 | i | | ! |

02 L

0 0-002 0-004 0-006 0-008 0-01 0-012 0-014 0-016 0-018 0-02

normalised steps, linear

these functions are hard to generate by hand. Our
approach is to generate the required functions
symbolically in the form of Matlab functions.

Simulation

Simulation is often necessary to compare the
performance of controllers acting on a nonlinear system.
Once again, symbolic computation can help here in
generating simulation code for both system and
compensator. Here, two compensators are compared.
Each uses identical model and observer feedback, but
they differ in that one uses nonlinear GPC and the other
is based on the linearisation of the nonlinear system
about a form f, = 90. The two controllers are compared
with steps in demand concentration, about this
equilibrium, of 0002, 0-02 and 0-2 moles kg In each
case, the outputs for the three steps are normalised and
superimposed on the same graph.

Fig. 8 corresponds to the nonlinear control. The three
normalised step responses are similar indicating that
the nonlinear controller has approximately linearised the
closed-loop system. Note-that exact linearisation is not
possible due to the unstable inverse dynamics which
cause the initial negative responses.

Fig. 9 corresponds to the linear controller. The three
normalised step responses are different indicating that
the linear controller does not have as good performance
as the nonlinear controller.

Conclusion

We believe that automating the process of modelling—
via the use of symbolic computation—gives control
designers the generic techniques needed to design
customised controllers (incorporating a physical system
model) for specific systems, thus enabling physical
system understanding to be incorporated into the design.

We emphasise the following points:

* [{ is computational symbolic algebra that makes this
approach to physical-model-based observer controllers
possible.

© Reduce was used as a typical computational symbolic
algebra package, but there is nothing special about its
capabilities; other packages—for example Maple,
Mathematic or MuPad—could equally well be used.
Indeed, the interactive user interface to Reduce (or any
other package) i1s not needed in this context: Reduce is
used as a symbolic algebra programming language.

e Symbolic manipulation is not just to do with manipu-
lating equations: it is also to do with manipulating
higher-level structures, such as bond graphs.

Acknowledgment

This work was supported by the Engineering and
Physical Sciences Research Council through grant
number GR/H41942.

References

1 GAWTHROP, P.],,JONES, R. W,, and MACKENZIE, S. A.: ‘Bond graph
based control: a process engineering example’, American Control
Conference, 1992

2 GAWTHROP, P.], and SMITH, L. P. S.: ‘Metamodelling: bond graphs
and dynamic systems’ (Prentice Hall, Hemel Hempstead, Herts., UK,
1996)

3 GAWTHROP, P.], and PONTON,]. W ‘Improved control using
dynamic process models’, Chemical Engineeving Reseavch and Design,
74(A1), pp.63-69

4 KARNOPP, D. C, MARGOLIS, D. L., and ROSENBERG, R. C.: ‘System
dynamics: a unified approach’ (John Wiley, 1990)

5 COSTELLO, D. J, and GAWTHROP, P. J.. ‘Physical model-based
control: experiments with a stirred-tank heater’, Technical Report
CSC-95003, Glasgow University Centre for Systems and Control, 1995

6 GAWTHROP, P. J,, and SILLER-ALCALA, 1. 1.: ‘Nonlinear generalised
predictive control’, Technical Report CSC-95031, Glasgow University
Centre for Systems and Control, 1995

© IEE: 1997

The authors are with the Centre for Systems and Control,
Department of Mechanical Engineering, University of Glasgow,
Glasgow G12 8QE. Prof. Gawthrop is an IEE Fellow.

COMPUTING & CONTROL ENGINEERING JOURNAL APRIL 1997

