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Abstract

A new bond graph framework for sensitivity theory is applied to model-based predictive control, state estimation, and parameter
estimation in the context of physical systems. The approach is illustrated using a nonlinear mechatronic system. © 2000 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

This paper combines a number of ideas to give a new
adaptive model-based output feedback controller applic-
able to practical non-linear systems. The key ideas used are:

e bond graph modelling (Karnopp, Margolis & Rosen-
berg, 1990; Thoma, 1990; Cellier, 1991; Gawthrop &
Smith, 1996),

e sensitivity bond graphs (Cabanellas, Felez & Vera, 1995;
Gawthrop, 2000),

e optimisation (Fletcher, 1987; Press, Teukolsky, Vetter-
ling & Flannery, 1992),

e predictive pole-placement control (Gawthrop &
Ronco, 1999),

e intermittent control (Ronco, Arsan & Gawthrop, 1999),

e partially known system identification (An, Atkeson &
Hollerbach, 1988; Canudas de Wit, 1988; Dasgupta,
Anderson & Kaye, 1986; Gawthrop, Jones & Macken-
zie, 1992; Gawthrop, Jezek, Jones & Sroka, 1993).

Bond graphs provide a well-established technique for
modelling dynamic systems; details may be found in the

“Extended version submitted to 1st IFAC Conference on Mechat-
ronic Systems, Darmstadt, September 2000.
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textbooks of Karnopp et al. (1990), Thoma (1990), Cellier
(1991) and Gawthrop and Smith (1996). As a graphical
approach, a number of computer-based graphical bond
graph modelling tools have appeared including MTT
(2000) — the one used to implement the ideas contained
in this paper. The bond graph approach can be compared
and contrasted with other methods under a number of
different headings. Firstly, bond graphs are equation
based (as opposed to assignment statement based). They
share this property with approaches such as Modelica
(2000) and Ascend (1999); but for this reason, the ap-
proach is superior to block diagram-based approaches
such as Simulink. Secondly, they provide an energy-based
approach which not only allows multi-domain modelling
but ensures that the resultant model is energetically
correct.

The bond graph approach has previously been sugges-
ted as a basis for control design by Karnopp (1979, 1995)
and by Gawthrop (1995b). This paper develops the idea
of sensitivity bond graphs (Cabanellas et al., 1995; Gaw-
throp, 2000) to provide a basis for model-based optimisa-
tion for the control and estimation of nonlinear dynamic
systems for which a bond graph model is available. In so
doing, it leads on to a bond-graph-based computer envi-
ronment which seemlessly combines bond graph tools
ranging from modelling and model-based control design
through to real-time identification and control.

The sensitivity theory of dynamic systems and its
application is well established and summarised in the

0967-0661/00/$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved.
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textbooks of Tomovic and Vukobratovic (1972) and
Frank (1978). There are many applications of sensitivity
methods to systems and control problems including sys-
tem optimisation (Cabanellas et al., 1995), controller tu-
ning (Van Amerongen & Udink ten Cate, 1975; Winning,
El-Shirbeeny, Thompson & Murray-Smith, 1977; Oppen,
Gong & Murray-Smith, 1995) and parameter estimation
(Eykhoft, 1974). The particular class of dynamic systems
described by electrical networks has its own techniques
(Calahan, 1972) based on the adjoint circuit approach.
In contrast to standard sensitivity theory (Tomovic
& Vukobratovic, 1972; Frank, 1978), which operates at
the system ordinary differential equation level, bond-
graph-based sensitivity models (Cabanellas et al., 1995;
Gawthrop, 2000) operate at the modelling level. In the
special case of linearisation, Karnopp (1977) has stated:
“Rather than treating linearized systems as abstract sets
of equations, we here look for structural analogies be-
tween non-linear components relating total system vari-
ables and linearized models relating incremental system
variables”; with “linearized” replaced by “sensitivity” this
statement summarises the approach of Gawthrop (2000)
used as a basis for this paper.

Optimisation has always been a fundamental technique
in control and estimation of dynamic systems, and this
has been become even more so with the popularity of
model-based predictive control (MPC) (Clarke, 1994;
Muske & Rawlings, 1993; Gawthrop, Demircioglu &
Siller-Alcala, 1998; Chen & Allgower, 1998; Kou-
varitakis, Cannon & Rossiter, 1999; Gawthrop & Ronco,
1999). Such methods rely on a model of the corresponding
physical system. In some application areas (for example
process control) physical, or first principles, models are
hard to come by and so empirical models tend to be
used. However in other application areas, in particular
mechatronics, physical models are more readily
available.

The predictive pole-placement (PPP) control introduc-
ed by Gawthrop and Ronco (1999) embeds the classical
pole-placement state feedback design into a model-
predictive formulation. This provides an alternative to
model-predictive controllers which are based on linear-
quadratic control. Although developed and analysed in
a linear systems context, this paper shows that the
method is applicable in the nonlinear case as well. As
with any continuous-time method, there is a computa-
tional/real-time issue. This is solved using the intermittent
approach of Ronco et al. (1999).

Whilst the emphasis in the paper is on systems that
have a well-defined associated physical model, within this
structure two forms of uncertainty are allowed: uncertain
states and uncertain physical parameters. The identifica-
tion of such partially known systems has a long history
(An et al., 1988; Canudas de Wit, 1988; Dasgupta et al.,
1986; Gawthrop et al, 1992, 1993) which has been
given an sensitivity bond graph interpretation by

Gawthrop (2000). The state estimation is used to convert
the state feedback predictive pole-placement to an output
feedback algorithm.

The outline of the paper is as follows. Section 2 reviews
the sensitivity of systems described by bond graphs
and derives some results for the particular bond
graph components used in this paper. Section 4 considers
nonlinear model-based predictive control based on
the linear predictive pole-placement of Gawthrop and
Ronco (1999) and model-based parameter and state es-
timation. Section 5 illustrates the approach using a de-
tailed model of, and data from, a laboratory inverted
pendulum experiment. Section 6 makes some concluding
remarks.

2. Sensitivity bond graphs

Sensitivity bond graphs are discussed by Cabanellas
et al.,, (1995) and by Gawthrop (2000), and the closely
related topic of linearised system bond graphs are
discussed by Karnopp (1977). This section provides
a brief introduction to the subject together with details
relevant to this paper.

A bond graph component is associated with a consti-
tutive relationship (or CR) which relates n,, time-varying
signals within the component and n, time-invariant para-
meters associated with the system within which the
component lies. Thus the CR for the ith component of
a system can be written as

¢i(vi(t)a 6) = O’ (1)

where v; € R™ contains the component signals and 0 € ‘R™
contains the system parameters.

In the special case that the CR is linear, it can be
written as

Ai(0)"vi(t) = 0, @

where the time-invariant vector A;(0)e R™.

In this paper, the sensitivity ‘v;e R™ of the signal
vector v; with respect to any (jth) component 0; of the
parameter vector 0 is of interest. In particular, ‘v; is
defined as

al)i
30,

Iy, =

)

It follows from Eq. (1) that d®;(v;(¢), 6)/d6 = 0 and so the
sensitivity CR ¢;("v;(t), v;(t), 0) becomes

0D;(v:(1), 0)" 0D, (v;(1), 0
OB, O 5 OP0,0)

=0.
ﬁvi 691

di(vi(1), v;(1), 0) =
“4)
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Eq. (4) is the sensitivity CR with respect to the jth para-
meter. It has the following important properties:

(1) The first term on the right-hand side of Eq. (4) repre-
sents the linearised (about v;(t)) CR relating the sensi-
tivity functions “v;(t). In other words, it is a linear CR
modulated by the variables v;(t) associated with the
system itself. It can be written as the summation

0D;(v;(2), H)T
ov;

where vy and v}, are the kth components of the
vectors v; and “v;, respectively.

(2) The second term on the left-hand side of Eq. (4)
represents an additional input to the sensitivity CR
dependent on the variables v;(t) associated with the
system itself.

(3) The sensitivity CR of Eq. (4) is local to the component
in the sense that the only variables appearing in
Eq. (4) are v;(t) and “u;(¢).

(4) The jth sensitivity CR of Eq. (4) does not depend on
(t) for 1 #j.

(5) If the ith CR @;(v;(¢),0) does not depend on 0; then
the second term of Eq. (4) is zero and there is no
explicit coupling between the actual and sensitivity
systems (though there will be implicitly if @;(v;(t),0) is
nonlinear). The corresponding sensitivity component
is then the linearised component (Karnopp, 1977).

(6) If @;(vy(2),0) is linear in v; (Eq. (2)), then Eq. (4)
becomes

ny; HT
= § PEOD

OU,k

0A4i(0)

AFOYu(0) + =5

vi(t) = (6)

j

(7) If the conditions of both items (5) and (6) hold, then
the CRs of the actual and sensitivity components are
identical and uncoupled.

(8) The bond graph sensitivity component can itself be
represented by a bond graph comprising
(a) the original component corresponding to Eq. (1),
(b) the linearised component corresponding to the

first term on the right-hand side of Eq. (4) and
(c) a coupling component corresponding to the sec-
ond term on the right-hand side of Eq. (4).
An example of this appears in Fig. 1.

For these reasons, it is possible to encapsulate two CRs:
the system CR of Eq. (1) and the jth sensitivity CR of
Eq. (4) within a single component containing 2#n,, vari-
ables: those contained in v; and ’v;. If the original com-
ponent had N ports, the new sensitivity component
(s-component) therefore has 2N ports. More conve-
niently, each port on the original component is replaced
by a sensitivity port (or s-port) which carries not only the
effort/flow pair e and f but also the corresponding sensi-

¢ ¢ €

Fig. 1. The sensitivity component sAE.

tivity pair ‘e and ’f. Such ports may be considered to be
connected by a sensitivity bond (s-bond) which encapsu-
lates the energy bond carrying e and f with the pseudo-
bond carrying ‘e and ’f.

It follows from the above equations that any bond
graph component has an s-component equivalent. More-
over, if the corresponding component is not dependent on
0, it is then the linearised component as discussed by
Karnopp (1977).

The following two examples are used in the paper.

2.1. A linear one-port R component

The standard linear bond graph R component has
a single port with effort e and flow f covariables related
by the CR,

Di(vi(t),0) =
That is, in the notation of Eq. (2),

ao=( ") w=(°) ®)
_ f

0A{(0)/00; = (0 —1)" and so the sensitivity CR of
Eq. (6) can be written as

de of

s -0 )

A0 v(t)=e —rf=0. (7)

2.2. A linear amplifier AE component

The nonstandard linear bond graph AE component
has two ports with effort e¢; and e, variables related by
the CR,

D;(v:(1), 0) = A;(0)"v;(1) = e,

As this represents an ideal effort amplifier, the input flow

f 1 =0.
That is, in the notation of Eq. (2)

ao=( ") w=(%) (11)
— K e

— Ke, =0. (10)
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0A{(0)/00; = (0 — 1)" and so the sensitivity CR of Eq. (6)
can be written as

de, dey

6K_K6K_el_0' (12)
The first two terms of Eq. (12) correspond to the linear
system itself, and the third term corresponds to the
sensitivity.

Fig. 1 gives the bond graph corresponding to the
sensitivity component sAE. The upper part of the dia-
gram comprises the actual AE component with gain
K and with CR given by Eq. (10). The lower part of
the diagram corresponds to the sensitivity CR where
& = Oe;/OK. The additional term (e,) of Eq. (12) is repre-
sented by the middle unit gain AE component.

3. Optimisation

The algorithms for estimation and control considered
in this paper give rise to optimisation problems of the
form

min J(0,t), (13)

0

where 0 € R™ is the parameter vector and the cost function
J(0,1) is

JO.0) =+

3 JTeT(t, 7)0(1)e(t, 7) dt (14)

0
where Q(t)e R™ *™ is a positive-semi-definite weighting
function and the error e(t,7) e R™ is

e(t,t) = [ y(t,7,0) — z(t,7)]. (15)

¥, 7, 0)e R™ is the system output and z(¢, 7)€ R™ a func-
tion of time. In general, y is not linear in 6 and so J(0,t) is
not in general quadratic in 6.

This paper is concerned with real-time control and
estimation and so optimisation speed is of the essence.
Therefore, rapid convergence combined with simplicity is
desirable. As, using the sensitivity bond graph approach,
gradient information is cheaply available, this suggests
the use of methods which make use of gradient informa-
tion. For these reasons, out of the plethora of methods
available (see, for example, the book of Press et al., 1992),
the quasi-Newton method was chosen. Further research
may yield alternative choices, but the experience so far
has been good. In particular, as shown by Ronco and
Gawthrop (1999) this approach is much faster than non-
linear programming methods which do not use derivative
information.

Differentiation of Egs. (13) and (15) with respect to
0 relate the gradient J, of J (with respect to 6) to the
corresponding gradient y,(¢) and the output y(t) as

J(0,1)p = L [x(t, 7. 0) — z(t, D)1 Q(e)ye(t, ) dt (16)

The quasi-Newton approach approximates the second
derivative J(0,t)gy of the cost function by

T
J(0,0)99 = J(0, )99 = J Yo(t, D)Q(1)ye(t, 7) d7. (17)
0
As discussed by Gawthrop (2000) (and summarised in
Section 2) the optimisation algorithm is then to repeat-
edly compute

0:=60— A0 (18)

until some convergence criterion is satisfied where Af is
the solution of the set of linear equations:

j@gAe == Jg. (19)

Two simple modifications of this method give additional
robustness in the face of difficult optimisation problems
(Press et al., 1992):

(1) Eq. (19) is solved via a singular-value decomposition
based pseudo-inverse and

(2) A check is made that the cost function decreases at
each step; if it does not, the step length is multiplied
by the scalar 0 < f <1 (whilst retaining the step
direction) until it does.

Finally, it is worth emphasising that the optimisation
algorithm attempts to minimise the square of a nonlinear
function with the help of the sensitivity (linearised)
system — the sensitivity system is not itself optimised.

4. Model-based estimation and control

There are many approaches to model-based predictive
control including those described by Muske and Rawl-
ings (1993), Gawthrop et al. (1998), Chen and Allgower
(1998) and Kouvaritakis et al. (1999).

However, the recently developed method of Gawthrop
and Ronco (1999) is particularly appropriate to the sensi-
tivity bond graph theme of this paper; however, this does
not exclude the possibility of bringing other methods
within the same framework. This method is briefly
described in Section 4.1.

In common with many model-based predictive con-
trol, the one described in Section 4.1 is a state feedback
method. Therefore, to give output feedback, Section 4.2
develops a simple, but novel, nonlinear observer which
can be used for parameter, as well as state, estimation.

These two algorithms are brought together within the
intermittent control context discussed by Ronco et al.
(1999) to give the overall implementable algorithm in
Section 4.3.

4.1. Model-based predictive control

Much work on model-based predictive control is in
a discrete-time setting and therefore inappropriate to the
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context of this paper. However, a number of continuous-
time approaches are available including those of Demir-
cioglu and Gawthrop (1991), Gawthrop et al. (1998) and
Chen and Allgower (1998). More recently, a new ap-
proach predictive pole placement (PPP) has been
developed by Ronco (1999) which, although for linear
systems, readily extends to this nonlinear context.

The nonlinear systems considered in this paper are
represented by

d
E)' g = /(.0

20
y=9g(x). 20
Such constrained-state equations can be derived directly
from the system bond graph (Gawthrop & Smith, 1996).
In simple cases E(x) = I, the unit matrix, in which case
Eq. (20) is in standard ordinary differential equation
form. In typical mechatronic systems, E(x) > 0 Vx. Des-
pite the fact that Eq. (20) could be then rewritten as

dx
E =fe(x7 u)>
y = g(x), (21)

fex,u) = E71(x)f(x, ),

it is often better to work with Eq. (20) directly as the
inverse of E(x) can be a complicated algebraic expression.

As in the linear case discussed by Gawthrop and
Ronco (1999) (and many other model-based predictive
controllers), interest lies in the solutions of

d
E(X*(t, T))EX*(I> T) zf(X*(t: T)? u*(ts T)),
" (22)
y¥(t, 1) = g(x*(t, 7).

The differential Egs. (20) and (22) are related by having
the same state-space matrices and by imposing the cross-
coupling conditions:

x*(t,0) = x(t),

u(t) = u*(t,0). @)

As in the approach of Gawthrop and Ronco (1999), the
moving horizon control signal u*(t,7) is linearly para-
meterised by the ny components of the column vector
U(t) so that

u*(t,7) = U*(0)U(1), (24)

where U*(z) is a n, x ny matrix of functions of . For the
purposes of this paper, the particular U*(z) given by

U*'(1) = e*U, (25)

is chosen, that is U*(1) is the state of the autonomous
system

L) = 4,0,
dr

U*(0) = US. (26)
The components of U*(t) can be regarded as a set of basis
functions for the control signal u*(t,7) and the compo-
nents of U(t) the corresponding weights or tuneable para-
meters. This idea is equally applicable to the nonlinear
case.

Similarly, the moving horizon setpoint w*(t, 7) is linearly
parameterised by the ny components of the column
vector W(t) so that

wX(t,7) = W@ W (), 27)

where W*(1) is a n, x ny matrix of functions of 7. Typi-
cally, the components W} () of W*(z) will be constant:

1 for tracking,

W) = { (28)

0 for regulation.

In the particular case of predictive control, the optimisa-
tion cost J(0) is of the form of Egs. (13) and (14) where
T =T, is the upper time horizon, 0 = U(t) and
z(t,7) = w*(t, 7). The weighting function Q(t) is

Q1) =

{om ifr<T,, 09)

I, ift>Ty,

where 0, and I, are the n, x n, zero and unit matrices,
respectively. As discussed by Gawthrop and Ronco
(1999), the aim of this cost is to make the system output
as close to the setpoint as possible between times T; and
T, whilst ignoring initial transient behaviour.

Unlike the linear case, the cost function J(6,t) will no
longer be necessarily quadratic in U(t) and so explicit
minimisation is no longer possible. However, numerical
optimisation is simplified if the derivative Jy(6, t) is avail-
able. Computation of Jy(0, t) requires, in turn, the compu-
tation of y3(t); this is precisely the information available
from the sensitivity bond graph.

4.1.1. Bond graph interpretation

Here, a new sensitivity bond graph interpreta-
tion of the approach of Gawthrop and Ronco
(1999) is given. The discussion is restricted to the
single input case (n, = 1) assuming that the input is an
effort, but can readily be extended to the more general
case.

Eq. (24) is the core of PPP and thus giving a bond
graph representation of this equation is a key issue. This
bond graph representation is given for the case when
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Fig. 2. Open-loop control.

ny = 4 in Fig. 2. The individual parts of Eq. (24) are the
given bond graph interpretations as follows.

U(t): Each element of the (adjustable) weight vector
U(t) (Uy(t)) is interpreted as the gain of a bond
graph amplifier (AE) component (see Section 2.2).

U*(1): The corresponding element of the basis function
vector U*(7) (U¥(1)) is interpreted as the output of
a bond graph source Se component which acts as
the input of the corresponding AE component.
(The Se, as opposed to the modulated MSe source
component, is appropriate here as it represents
a fixed function of time as specified by, for
example, Eq. (25).)

Thus, the output of each AE component represents the
product of U,(t) and U}(z); these products are then sum-
med at a 1 junction to implement the scalar product
implied by Eq. (24).

With this interpretation, the problem of determining
the sensitivity y#(t) of the system output y*(t,7) of the
dynamic system of Eq. (22) with respect to the weighting
vector U(t) is interpreted as finding the sensitivity bond
graph corresponding to the the bond graph of the dy-
namic system augmented by the bond graph of Fig. 2.

In particular, using the sensitivity bond graph ap-
proach of Section 2, the bond graph of Fig. 2, together
with the rest of the dynamic system, is converted into
a sensitivity bond graph, thus giving the sensitivity of the
system outputs with respect to each of the ny amplifier
gains — ny components of U(t) required for Egs. (16)
and (17).

4.2. Parameter and state estimation

Each bond graph component has a constitutive rela-
tionship containing a number of parameters. Thus, for
example, the R component with CR of Eq. (7) is para-
meterised by r. Because of the close mapping of the bond

graph to the corresponding physical system, each such
parameter has a precise physical meaning. Many of these
parameters (such as lengths and masses) will be known
a priori from data sheets or physical inspection; others
such as friction coefficients will not be precisely known.
Therefore, many systems will be partially known in this
sense. Such systems are typically not linear in the system
parameters and various approaches to this issue are
described elsewhere (Dasgupta et al., 1986; Canudas de
Wit, 1988; Gawthrop et al., 1992). Here, an off-line
optimisation approach based on Section 3 is adopted.
The signal z(t,7) of Eq. (15) is defined as

2(t) = yu(t + 1), (30)

where y,(t) is the measured actual system output. The
parameter vector 0 contains the system parameters. The
weighting function Q is

(1) =1, (31)

giving equal weighting to the parameter error.

As noted previously by Gawthrop (1995a), the initial
state of a dynamic system represented by a bond graph
may be explicitly represented by the addition of an Se
component to the corresponding C components and an
Sf component to the corresponding I components. Thus,
the initial state translates to a system parameter — the
value of the source output — and so these parameter
identification techniques can be applied equally well to
initial state estimation.

4.3. The intermittent approach

Continuous-time predictive control algorithms have
the apparently fatal drawback that optimisation must be
completed within an infinitesimal time. However, this
problem can be overcome using intermittent control; see,
for example, Ronco et al. (1999) for a detailed discussion
of the approach.

Briefly, the idea is to update the control weights inter-
mittently, and, during this time T, run the controller in
open loop using the previously calculated trajectory.
Thus, there are two processes running in parallel: genera-
tion of the open-loop control and computation of the
control weights U(t) ready for the next open-loop control
trajectory. Thus, control is continuous but feedback is
intermittent: this has biological analogies.

As discussed by Gawthrop & Ronco (1999), the PPP
optimisation problem can be solved explicitly or, if com-
puted recursively, the quasi-Newton algorithm converges
in a single step. However, in the nonlinear case, conver-
gence can take many steps depending on the initial
choice of 60 = U(t). Therefore, the choice of the initial
value is important to ensure rapid convergence. In the
linear case, it is known that, in the absence of distur-
bances, the open- and closed-loop trajectories are the
same and thus the open-loop control trajectory in one
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interval is the continuation of that in the previous interval.
This will not be true in the nonlinear case, but neverthe-
less provides a good starting value for the optimisation.
The following lemma provides the appropriate
information.

Lemma 1 (Trajectory continuation). If U*(z) is given by
Eq. (25) and the control weighting function U(t) at time
t =(k + )T, is related to that at time t = kT, by Eq. (32)

U((k + 1)T,,) = e* " U(KT,) (32)

then the control trajectory within the (k + 1)th open-loop
interval is the continuation of the trajectory in the previous
interval in the sense that

uX(k + DT 1) = w* (kT T + To)- (33)

Proof. Using Egs. (24) and (25), it follows that
(KTt + Tp) = Ube** VU (KT,) (34)

_ U"(l)'eAIkTuzeAITux U(kT,). (35)
The result follows using Eq. (32). O

To summarise: parts (1) and (2) of the algorithm of
Table 1 are executed in parallel every T, seconds. Part
(1) of the algorithm is the open-loop control; and part (2)
of the algorithm updates the state and parameter esti-
mates together with the control weights for the next
iteration. The iteration is indexed by k.

5. Example

A commercial laboratory inverted pendulum system
described by Apkarian (1995) is pictured in Fig. 3(a). This
example was chosen for a number of reasons: the system
is nonlinear, the system is nonsquare (two output, one
input) and its dynamics, though complex, can be readily
captured by the bond graph approach.

As a typical mechatronic system, some parameters are
known and some are not. Table 2 shows a list of the
relevant physical parameters of this system. Apart from
the three friction parameters (f,, f; and f,) these para-
meters are all listed in the system manual and, where
appropriate were checked by direct measurements on the
component parts of the system.

The construction of the system was such that the
friction at the joint of the pendulum was negligible. The
remaining friction coefficients were estimated from mea-
sured data using the methods of Section 4.2 as described
in Section 5.2.

The system is designed for using simple linear control
techniques and the pendulum angle is restricted to lie
within a small distance from vertical and the system
is therefore incapable of large movements. Hence, the
properties of the non-linear predictive pole-placement

Table 1
The algorithm

(1) Compute the open-loop control using the predefined U*(t)
together with U(kT,;) computed at iteration k — 1:
u(t + kTo) = UX@)U(T,) (36)
(2) Compute U((k + 1)T,):
(a) Using output data from the previous interval (k — 1)T,; <
t <kT,), and the previously estimated “initial” state use the
method of Section 4.2 to estimate the system “initial” state at
t =(k — 1)T,, and, optionally, system parameters.
(b) Use to model to compute the current state at t = kT,,.
(c) Use to model to compute the predicted state at t = (k + 1)T ;.
(d) Use the continuation trajectory condition (Eq. (32))
to compute a starting value for the PPP optimisation.
(e) Using the predicted state, together with estimated system
parameters and the model, use the method of Section 4.1
to compute the control weighing function U((k + 1)T,;)
for the next algorithm iteration.

Inverte/dP dulum
P

{ OpenLoop—.—%‘ Drive 4}—‘7( Cart ‘}

(b)
Fig. 3. The inverted pendulum on a cart; (a) schematic, (b) word bond
graph.
algorithm are demonstrated using a simulated version of
the model of the system in Section 5.3.

5.1. Bond graph model

Bond graph modelling is a well-established technique
and a number of textbooks exist including those of
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Table 2
Physical parameters

Parameter  Units Value Description

l, H 0.18¢ — 3 Motor armature inductance
Ja kgm? 3.87e —17 Motor armature inertia

Iy Q 2.6 Motor armature resistance
fa N/m s Unknown Motor armature friction
k, None 1/3.7 Motor gear ratio

r m 0.635¢ —2 Cart wheel radius

m, kg 0.7429 Cart mass

f. N/m s Unknown Cart friction

m, kg 0.210 Pendulum mass

L, m 0.61m Pendulum length

J» kgm? 1am, 2 Pendulum inertia

o kgm? Negligible Pendulum friction

Karnopp et al. (1990), Thoma (1990), Cellier (1991), and
Gawthrop and Smith (1996). To avoid unnecessary de-
tails, the word bond graph of the higher levels of the
system is presented in Fig. 3(b) and the word bond graph
of two of the subsystems in Fig. 4. The open-loop control
bond graph (see Section 4.1) appears in Fig. 2. The
system nonlinearities arise from the angle-modulated
transformers of Karnopp (1969) corresponding to the
kinematic transformations inherent in the inverted
pendulum problem. The details of the pendulum
model are the same as presented by Gawthrop and Smith
(1996).

The resulting system has five states (the pendulum
angle and angular momentum, the cart position and
momentum and the motor armature current). The pen-
dulum model contains a number of I compo-
nents in derivative causality and, as discussed by
Gawthrop and Smith (1996), this leads to constrained-
state equations in this case corresponding to the system
inertia matrix.

The corresponding sensitivity system has 10 states as
was automatically generated from the system bond graph
using the software MTT (MTT, 2000) which also gener-
ated code in the C language to be compiled and executed
ready for generating the sensitivity functions to be used
in the optimisations and simulations.

The algorithm of Table 1 was coded in Octave (Octave,
1999) and used to generate the figures using a Toshiba
laptop running GNU/Linux (GNU, 1999).

5.2. Friction estimation

It appears from the experiments reported here that
a linear friction model suffices. However, the method can
be readily extended to more sophisticated friction mod-
els, for example those of Hirshorn and Miller (1999) and
Canudas de Wit, Olsson, Astrom and Lischinsky (1995).
Within this context, there are two unknown friction

| " | TF: | TF:
A DCS:mot — TRk g —| TFr

N

Power supply unit  DC motor Internal gear Mator gear

R:r_c IS:m_c S8:[x}

N

S8:[drive] — 1 —_— INTFS:x —_— De:Position

x-velocity
Sf:zero_velocitylﬁ 1— S$8:[y}
y-velocity
Rir_p |1 —| ss:[a]

angular-velocity

(b)

Fig. 4. Subsystems: word bond graph; (a) drive subsystem, (b) cart
subsystem.

coefficients f, and f.. As far as the system output is
concerned, these two friction coefficient may be replaced
by 0 and r, =f, + (1/(rk,)*)f,. Thus, for the purposes
of control, only the single coefficient r, needs to be
measured.

Input output data was gathered for the cart with the
pendulum removed. Fig. 5(a) shows the system input (V)
and the system output (m) plotted against time (s). These
data were used in the algorithm of Section 4.2 and both
r. and the three initial system states were estimated.
Fig. 5(b) shows the estimated value of r, plotted against
the iteration number. Convergence takes about three
iterations. Note that, in this context, the value of the
initial system states are not of any interest. However, it is
necessary to estimate them to fit the data correctly. The
estimated value of r, is

7. = 7198 N/ms. 37

Two advantages of the physically based estimation ap-
proach are illustrated by this experiment. Estimation can
take place on part of the overall system, and the known
physical data is fully used.

5.3. Predictive control

A number of simulations of the model of Section 5.1,
using the parameters of Table 2 together with Eq. (37),
were made to verify the properties of the algorithm. The
basic controller parameters are (unless otherwise stated)
given in Table 3. The corresponding basis functions U*(t)
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(b) lterations
Fig. 5. Estimating the cart friction; (a) data, (b) estimated r..
Table 3

Controller parameters

Name Symbol Value
Input time constant Ty 0.02s
Number of basis functions ny 4
Open-loop interval Ty 0.1s
Sample interval T, 0.005 s
Lower optimisation horizon Ty 0.8 s
Upper optimisation horizon Ty 10s
Angle setpoint W, 0.0
Position setpoint Wy 0.0

were the first four (unormalised) Laguerre functions of
Fig. 6 corresponding to

100 0
112100

“T T Tel2 2 1 of (38)
22 2 1

AN =

08

0.6

-06 o .

Time (sec)

Fig. 6. The basis functions U*.
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400

300 1

200 H 1

| ]
wl |/
\

-200
\

-300 1 1
02 04 06 0.8 1 1.2 1.4 1.6 1.8 2

0
(b) Time (sec)

Fig. 7. Regulation from 0 = m/2; (a) pendulum and cart positions,
(b) control.

where Ty is given in Table 3. In all cases, regulation from
an initial horizontal pendulum position to a vertical
pendulum position with an incorrect initial state estimate
is used; this is a demanding control problem.
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Pendulum’
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Fig. 8. Regulation from 6 = /2 with noise; (a) pendulum and cart
positions, (b) control.

The results are summarised as follows:

Fig. 7(a) shows the two system outputs (X and «), and
Fig. 7(b) the corresponding control signal (motor
voltage). The initial angle of the inverted pendulum is
o = — 1/2 (pendulum horizontal), but the model initially
assumes « = 0. For the latter reason, no control action is
taken during the initial control interval t < T,; = 0.2 and
the pendulum drops further. Based on these data, and in
the absence of measurement noise, the state estimator
obtains an accurate estimate of the state which is
used as the basis for the subsequent control actions.
At the end of the simulation, both outputs are close to
the setpoints of zero (pendulum vertical, centre track).
The control signal is considerably outside the specified
maximum of + 10 V; this is indicative of the fact noted
above that the system design is unsuitable for this large
motion.

Fig. 8 is same as Fig. 7 except that Gaussian white
measurement noise of standard deviation 0.01 is added to
each output. This causes some deviation from the ideal
situation, but a stable result is still achieved.

ENATAEN

0.5

-0.5

N~

0 0.2 0.4 06 0.8 1 12 1.4 16 18 2
(a) Time (sec)

-0.5

\ 3
25 { J

3 1 i I
0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8 2

o
(b) Time (sec)

Fig. 9. Effect of number of basis functions ny; (a) cart position,
(b) pendulum position.

Fig. 9 illustrates the same simulation as Fig. 7 but with
four different values of ny = 1 — 4. For clarity, the Cart
position is displayed separately (part (a)) from the Pendu-
lum position (part (b)). ny = 4 corresponds exactly to the
situation of Fig. 7, the other three plots display the effect
of reducing the number of basis functions. Roughly
speaking, ny = 3 gives little loss in performance, whilst
smaller values of ny are unsatisfactory.

Fig. 10 shows the number of optimisation iterations
required to evaluate the control weights U(t) at each step.
Three graphs are shown. Those marked “Nonlinear” and
“Nonlinear with noise” correspond to Figs. 7 and 8§ re-
spectively, that marked “Linear” corresponds to a simu-
lation identical to that of Fig. 7 except that the initial
angle is « = — n/100 and thus the system is essentially
linear. Except for the first iteration, the linear case re-
quires the minimum of 2 iterations indicating a lin-
ear/quadratic optimisation. The nonlinear case requires
over 40 iterations for the first nontrivial optimisation
(t = 0.2) but thereafter requires less than 10 indicating
that the trajectory continuation method of Lemma 1 is
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Fig. 10. Optimisation iterations.

effective. The noisy case requires more iterations as the
estimated state and predicted states are different.

6. Conclusion

It has been shown that bond graph models of dynamic
systems in general, and mechatronic systems in particu-
lar, can be used to generate sensitivity information in
a form appropriate for optimisation, and that this opti-
misation can be used for real-time identification, state
estimation and control of nonlinear systems which have
a bond graph representation.

Although the results of Section 5.2 are based on real
data, because of the limitations of the equipment it was
not possible to perform the swing-up experiment. How-
ever, the simulations of Section 5.3 were based on the
verified model and are therefore believed to provide
evidence of the applicability of this approach.

Making use of appropriate software tools, this ap-
proach provides a powerful way of facilitating the design
of mechatronic and other control systems. It is planned
to extend the software using the real-time Linux kernel to
provide the seemless environment mentioned in the In-
troduction.

Future work will include extension of the analysis of
the linear PPP algorithm to the nonlinear case; perform-
ing experiments on real mechatronic systems and experi-
mental comparison with other approaches.
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